主管QQ:站内信联系

工业机器人机械系统设计2024-03-16 12:42

  EPAs号称要成为未来的人造肌肉。研究人员已经在雄心勃勃地工作,希望能够为许多当代的技术寻找基于EPA的可选方案,而且不害怕将他们的发明物与自然物竞争。几年前,有几个人,包括来自美国加州帕萨迪纳喷气推进实验室(JPL)的高级科学家Yoseph Bar-Cohen,向电活化聚合物研究团体发起了一项挑战,以激发人们对该领域的兴趣:展开一项竞赛,看谁能够最先制造出EAP驱动的机器人手臂,而且必须在与人的手臂的一对一掰手腕比赛中取胜。

  与一般机械设备相比,机器人结构的动力特性是十分重要的,这是材料选择的出发点。材料选择的基本要求是:强度高、弹性模量大、重量轻、阻尼大、材料价格低。

  工业机器人是一个多刚体耦合系统,系统的平衡性是极其重要的,在工业中采用平衡系统的理由是:安全、借助平衡系统能降低因机器人结构变化而导致重力引起关节驱动力矩变化的峰值源自文库借助平衡系统能降低因机器人运动而导致惯性力矩引起关节驱动力矩变化的峰值、借助平衡系统能减少动力学方程中内部耦合项和非线性项,改进机器人动力特性、借助平衡系统能减小机械臂结构柔性所引起的不良影响、借助平衡系统能使机器人运行稳定,降低地面安装要求。

  1999年:日本索尼公司推出机器人偶爱宝(AIBO),娱乐机器人迈入普通家庭。

  2002年:美国iRobot公司推出了吸尘器机器人Roombar,为世界上商业化最成功的家用机器人。

  2006年:微软公司推出Microsoft Robitics Studio机器人,从此机器人模块化平台统一化的趋势越来越明显。

  工业机器人主体结构设计的主要问题是选择由连杆件和运动副组成的坐标形式。工业机器人的坐标形式主要有直角坐标式、圆柱坐标式、球面坐标式、关节坐标式等。

  直角坐标式机器人主要用于生产设备的上下料,也可用于高精度的装配和检测作业。

  圆柱坐标式机器人主要有三个自由度:腰转,升降,手臂伸缩。手腕常采用两个自由度,绕手臂纵向轴转动与垂直的水平轴线转动。手腕若采用三个自由度,机器人总自由度达到六个。

  机器人手臂的伸缩,横向移动均属于直线运动。实现手臂往复直线运动的机构形式比较多,常用的有活塞油(气)缸,齿轮齿条机构,丝杠螺母机构以及连杆机构等。由于活塞(气)缸的体积小,重量轻,因而在机器人结构中应用的比较多。

  实现机器人手臂回转运动的机构形式是多样的,常用的有叶片式回转缸,齿轮传动机构,链轮传动机构,活塞缸和连杆机构等。

  1954年:美国人戴沃尔制造出世界上第一台可编程的机械手,并注册了专利。

  1962年:美国AMF公司生产出万能搬运机器人,与Unimation公司生产的万能伙伴机器人一样成为真正商业化的工业机器人。

  1967年:日本川崎重工公司和丰田公司分别从美国购买了工业机器人Unimat和Verstran的生产许可证,日本从此开始了对机器人的研究和制造。

  传动部件是驱动源和机器人各个关节连接的桥梁,是工业机器人的重要部件。机器人的运动速度、加速度(减速度)特性、运动平稳性、精度、承载能力很大程度上是取决于传动部件设计的合理性和优劣。因此,关节传动部件的设计是工业机器人设计的关键之一。

  移动关节导轨的目的是在运动过程中保证位置精度和导向,对移动导轨有如下要求:

  机器人技术一词虽然出现的较晚,但这一概念在人类的想象中却早已出现。自古以来,有不少科学家和杰出工匠都曾制造出具有人类特点或具有动物特征的机器人雏形。

  我国西周时期的能工巧匠就研制出了能歌善舞的伶人,这是我国最早的涉及机器人概念的文章记录,此外春秋后期鲁班制造过一只木鸟,能在空中飞行,体现了我国劳动人民的智慧。

  移动关节导轨主要分类:普通滑动导轨、液压动压滑动导轨、液压静压滑动导轨、气浮导轨和滚动导轨。

  上面介绍的导轨中,前两种具有结果结构简单、成本低的特点,但是必须有间隙以便润滑,但是间隙的存在又将会引起坐标的变化和有效负载的变化,在低速时候容易产生爬行现象。第三种静压滑动导轨结构能产生预载荷,能完全消除间隙,具有高刚度、低摩擦、高阻尼等优点,但是它需要单独的液压系统和回收润滑油的机构。第四种气浮导轨不需要回收润滑油的机构,但是刚度和阻尼较低。第五种滚动导轨在工业机器人导轨种用的是最广泛,具有很多的优点:1摩擦小,特别是不随速度变化;2尺寸小;3刚度高承载能力大;4精度和精度保持度高;5润滑简单;6容易制造成标准件;7易加预载,消除间隙,增加刚度等等。但是,滚动导轨用在机器人机械系统也存在着缺点:1阻尼低;2对脏物比较敏感.

  机器人一词由捷克作家--卡雷尔.恰佩克在他的讽刺剧《罗莎姆的万能机器人》中首次提出,剧中描述了一机器奴仆Robot。此次Robot被沿用下来,中文译成机器人。

  1942年美国科幻作家埃萨克.阿西莫夫在他的科幻小说《我.机器人》中提出了“机器人三大定律”,这三大定律后来成为学术界默认的研发原则。

  现代机器人出现于20世纪中期,当计算机技术出现,电子技术的进步,数控机床的出现及与机器人相关的控制技术和零件加工技术的成熟,为现代机器人的发展打下了基础。

  1.刚度高。为了防止臂部在运动过程中产生过大的变形,手臂的截面形状要合理选择。工字形截面弯曲刚度一般比截面大;空心管的弯曲刚度和扭转刚度都比实心轴大得多,所以常用钢管作臂杆及导向杆,用工字钢和槽钢作支撑板。

  1969年:日本早稻田大学加藤一郎实验室研发出第一台以双脚走路的机器人。

  1979年:美国Unimation公司推出通用工业机器人PUMA,标志着工业机器人技术已经完全成熟。

  丝杠传动机构是将旋转运动变成直线运动的重要传动部件,其优点是不会产生冲击,传动平稳,无噪声,能自锁,由较小的扭矩产生较大的牵引力;缺点是传动效率底下。采用滚珠丝杠传动则能解决这种问题,并且传动精度和定位精度都很高,在传动时灵敏和平稳性很好,磨损小,使用寿命比较长。

  人的下肢主要功能是承受体重和走路。对于静止直立时支承体重这一要求,机器人还容易做到,而在像人那样用两足交替行走时,平衡体重就存在着相当复杂的技术问题了。首先让我们分析一下人的步行情况。走路时,人的重心是在变动的,人的重心在垂直方向上时而升高,时而下降;在水平方向上亦随着左。右脚交替着地而相对应地左、右摇动。人的重心变动的大小是随人腿迈步的大小、速度而变化的。当重心发生变化时,若不及时调整姿势,人就会因失去平衡而跌倒。人在运动时,内耳的平衡器官能感受到变化的情况,继而通知人的大脑及时调动人体其他部分的肌肉运动,巧妙地保持人体的平衡.而人能在不同路面条件下(包括登高、下坡、高低不平、软硬不一的地面等)走路,是因为人能通过眼睛来观察地面的情况,最后由大脑来决策走路的方法,指挥有关肌肉的动作。从而可以看出,要使机器人能像人一样,在重心不断变化的情况下仍能稳定的步行,那是困难的。同简化人手功能制造机器人的上肢的方法一样,其下肢没有必要按照人的样式全盘模仿。只要能达到移动的目的,我们可以采取多种形式:用足走路是一种形式,还可以像汽车、坦克那样用车轮或履带(以滚动的方式)来移动。

  1984年:英格伯格再次推出机器人Helpmate,这种机器人能在医院为病人送饭送药和送邮件。

  1996年:本田公司推出仿人型机器人P2,双足行走机器人的研究达到了一个新的高度。

  1998年:丹麦乐高公司推出机器人Mind-storms套件,机器人开始进入个人世界。

  工业机器人是机器人的一种。机器人可以代替或者协助人类完成各种工作,凡是枯燥的、危险的、有毒的、有害的工作,都可由机器人大显身手。机器人除了广泛应用于制造业领域外,还应用于资源勘探开发、救灾排险、医疗服务、家庭娱乐、军事和航天等其他领域。机器人是工业和非产业界的重大生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。工业机器人作为一种特殊的自动化设备,具备智能技术,所以工业机器人在传统产业的应用将大大的提升企业产品的竞争力,促进产品的更新换代,对国家经济产生巨大的推动作用。而在科学研究,资源勘探方面,工业机器人可替代人的大部分工作,因此促进了国家的可持续发展,并增强了国家的国际地位。在国防领域工业机器人的研究更是层出不穷,特别是在强调零伤亡战争的今天,机器人可替代士兵前往危险的前沿地区,而且没有人性的一些弱点,增强了战斗力,为国家创造了一个和平安定的环境。

  在压电材料中,机械应力可导致晶体电极化,而且反之亦然。用电流刺激这种材料将使其变形;通过改变其形状可以产生电。

  响应电流而改变形状的聚合物可分为两类:离子型和电子型,其优势和劣势正好互补。

  离子型EAPs(包括离子聚合物凝胶体、离子性高分子如金属复合材料、导电性高分子以及碳纳米管)是在电化学的基础上工作——即正负离子的移动和扩散。它们可以直接用电池带动,因为即便一个个位(single-digit)电压也能够使它们大幅度弯曲。不足之处在于,离子型EAPs通常必须是湿的,因此应当密封在挠性薄层中。许多离子型EAPs的另一个主要缺陷在于只要电流接通,该材料就会一直运动,如果电压超过一定值,将会产生电解,从而给材料造成无法修复的损坏。

  直接传动。驱动源不经过中间环节或经过一个速比等于1的机械传动这样的中间环节与关节相连。

  模块化机器人是有一些标准化、系列化的模块件通过具有特殊功能的结合部用积木拼接的方式组成一个工业机器人系统。模块化设计是指基本模块设计和结合部设计。

  球面坐标式机器人也叫极坐标式机器人,具有较大的工作范围,设计和控制系统比较复杂。

  关节坐标式主体结构的三个自由度腰转关节、肩关节、肘关节全部是转动关节,手腕的三个自由度上的转动关节(俯仰、偏转和翻转)用来最后确定末端操作器的姿态,它是一种惯犯使用的拟人化的机器人。

  传动方式选择是指选择驱动源及传动装置与关节部件的连接形式和驱动形式,主要包括:

  2.导向性好。为防止手臂在直线运动中,沿运动轴线发生相对转动,或设置导向装置,或设计方形,花键等形式的臂杆。

  3.重量轻。为提高机器人的运动速度,要尽量减小臂部运动部分的重量,以减小整个手臂对回转轴的转动惯量。

  除了臂部设计上要求力求结构紧凑,重量轻外,同时要采用一定形式的缓冲措施。

  一类新颖的致动设备(例如致动器、发动机、发电机等)正在步入商业化。它们基于在受到电刺激时会改变形状的聚合物。

  数十年前,构建致动器或者致动设备的工程师就已经为肌肉找到了一种人造替代物。作为对神经刺激的响应,肌肉只须改变长度就能够准确地控制其施加的力量,例如眨眼睛或举起杠铃。同时,肌肉还表现出比例恒定的属性:对于各种尺寸大小的肌肉,其机理都一样,相同的肌肉组织既可以给昆虫、也能够为大象赋予力量。因此,对于难以制作电动马达的驱动设备,某种类似肌肉的东西也许会有用武之地。

  相反,电子型EAPs(例如铁电聚合物、电介体、电绝缘橡胶以及电致伸缩移植橡胶)则由电场驱动。它们需要相对较高的电压,因此会产生让人不舒服的电击。但是,作为回报,电子型EPAs能够迅速作出响应,并且传递较强的机械力。它们不需要保护薄层,而且几乎不需要电流就能够保持某个定位。

  SPR的人造肌肉材料属于电子型EAP类型。它的成功开发经历了漫长曲折的道路,而且多少带有一些偶然性,可以称得上是奇思怪想式技术创新的一个经典范例。

  转动关节轴承主要用的是球轴承,它能承受轴向和径向载荷,摩擦较小,对轴和轴承座的刚度不敏感。主要分向心推力球轴承和“四点接触”球轴承。